Lignina e nanocelulose
A nova tendência para o futuro é a bioeconomia, que é assentada sobre os conceitos de biorrefinaria. A biorrefinaria consiste em um conjunto de operações unitárias e de processos para aproveitar os constituintes da biomassa e produzir não apenas biocombustíveis, mas também produtos e substâncias da química verde.
A maioria das pesquisas em biorrefinaria é focada na desconstrução da biomassa vegetal complexa e, em seguida, na construção de novas moléculas úteis como combustíveis (bioetanol, biodiesel, etc.), químicos (vanilina, ácido succínico, etc.), e produtos (nanocelulose, compósitos, etc.). Em geral, a biorrefinaria produz um grande volume de produtos de baixo valor agregado que ajudam a manter a escala de produção; e muitos produtos em pequeno volume, mas de alto valor agregado, que podem aumentar e viabilizar a rentabilidade da biorrefinaria.
No Brasil, um dos candidatos naturais a fazer parte dessa tendência é a indústria de papel e celulose, que, atualmente, já podem ser consideradas uma biorrefinaria incompleta. A polpa de celulose é o principal produto dessas fábricas. A celulose é o polímero natural mais abundante na natureza e está presente principalmente nos vegetais. Industrialmente, sua maior fonte são os plantios florestais.
Entretanto, existe outro polímero natural – em segundo maior volume na natureza – que também ocorre nas plantas, porém formado por anéis fenólicos, distinto da celulose. Uma indústria de polpação tem como maior objetivo separar a lignina da celulose, a qual já tem um mercado enorme, sendo empregada em produtos como papel e embalagens, tintas, explosivos, tecidos, entre outros.
Todavia, esse outro recurso natural sustentável, a lignina, tem sido usado principalmente para a geração de energia. Para ser considerada uma biorrefinaria, uma indústria de polpação de madeira deverá, entre outras opções, começar a produzir outras substâncias químicas a partir da lignina. Não apenas para seguir uma tendência, mas principalmente para melhorar a sua rentabilidade.
O grande charme do mundo nanométrico, em que os materiais têm dimensões da ordem de 10-9 do metro, advém da energia superficial dos objetos. Quanto menor o tamanho, maior será a quantidade de moléculas na superfície quando comparadas às que ficam no interior. E isso causa uma mudança surpreendente de comportamento desses materiais, a ponto de eles não mais se parecerem com o mesmo material em uma escala macroscópica.
Essa mudança pode ser de uma simples cor, de propriedades elétricas, magnéticas, dureza, química, etc. E, claro, essa alteração de comportamento causa uma dificuldade enorme de manipulação desses objetos para que consigamos aproveitar no desenvolvimento de novos produtos, que exige uma tecnologia especial chamada de nanotecnologia.
No caso da nanocelulose, por exemplo, é muito difícil mantê-la em tamanho tão reduzido sem o auxílio de um meio líquido. Isso dificulta sua manipulação quando desejamos reforçar materiais que não têm afinidade com água, por exemplo, no reforço da maioria dos polímeros termoplásticos. Mas, por outro lado, aumenta a segurança das pessoas e do meio ambiente no manuseio desse material. As aplicações já estão surgindo e a primeira delas é no reforço de papel, principalmente de embalagens.
Mas provavelmente veremos aplicações em alimentos, como parte de embalagem comestível, controladores de viscosidade e também como alimento funcional por permitir melhora do trato intestinal e ajudar – como toda fibra – na diminuição de colesterol, triglicerídeos e glicose. Aplicações médicas estão surgindo em muitos laboratórios, existem muitas pesquisas em que essa celulose é aplicada como um molde biodegradável para ocrescimento de células tronco.
No setor eletroeletrônico muitas são as pesquisas, desde supercapacitores a telas flexíveis de televisores e filmes condutores. Em nosso grupo já trabalhamos com liberação lenta de biocidas e de fertilizantes, operação de grande aplicação no agronegócio. Mas, claro, as aplicações e possibilidades não param por aqui. A imaginação é o limite.